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Mechanical Imaging of Soft Tissues with Miniature Climbing Robots
Artem Dementyev, Rianna M. Jitosho, and Joseph A. Paradiso.

Abstract— Systematically mapping the mechanical properties
of skin and tissue is useful for biomechanics research and dis-
ease diagnostics. For example, later stage breast cancer and
lymphoma manifest themselves as hard nodes under the skin.
Currently, mechanical measurements are done manually, with a
sense of touch or a handheld tool. Manual measurements do not
provide quantitative information and vary depending on the skill
of the practitioner. Research shows that tactile sensors could
be more sensitive than a hand. We propose a method that uses
our previously developed skin-crawling robots to noninvasively
test the mechanical properties of soft tissue. Robots are more
systematic and repeatable than humans. Using the data collected
with a cutomoter or indenter integrated into the miniature robot,
we trained a convolutional neural network to classify the size and
depth of the lumps. The classification works with 98.8% accuracy
for cutometer and 99.6% for indenter for lump size with a diameter
of 0 to 10 mm embedded in depth of 1 to 5 mm in a simulated tissue.
We conducted a limited evaluation on a forearm, where the robot
imaged dry skin with a cutometer. We hope to improve the ability to
test tissues noninvasively, and ultimately provide better sensitivity
and systematic data collection.

Index Terms— Lump detection, imaging, sensing,
robotics, machine learning, skin

I. INTRODUCTION

Systematically mapping mechanical properties of skin and tissue
is useful in several applications, including disease diagnostics, cos-
metics, and biomechanics. For example, some cancers are stiffer
than normal tissues [1], [2] and typically are detected via palpation
(touching by hand). This current method requires a doctor to perform
the palpation, and consequently is disadvantageous because it does
not provide systematic quantitative data. The latest advances in
machine learning can improve measurement accuracy and resolution
of complex tissues and aid doctors in noninvasive diagnostics. For
example, machine learning techniques have shown promise in auto-
matic detection of lung cancer [3] and kidney failure [4]. These
machine learning techniques require systematic quantitative data.
Since palpation is done by hand, there is a lack of quantitative data
needed to apply machine learning techniques [5]. Also, prior research
has shown that sensors could be more sensitive than human touch
[6], [7], which suggests that a sensor designed for palpation may be
better than a human at detecting nodes under the skin. Such a device
would also generate the systematic quantitative data necessary to
apply machine learning techniques for improving diagnostic accuracy.
However, there are currently no accepted automated solutions to map
the mechanical properties of the skin.

To address this issue, researchers have been developing sensor
arrays that detect the mechanical properties of the skin. In the designs
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explored so far, a transducer makes repeated measurements over
multiple points to generate a map. Existing research provides three
methods of performing these measurements, and each method has
associated challenges. The first method of measurement is manually
applying a handheld tool to the skin. Some devices use an array of
pressure sensors [8], [9]. Others measure deformation by capturing
internal reflections of gel [10], or piezo oscillations [11], [12].
Cutometers [13]–[15] can also be used to measure deformation
via suction or by using a rolling [16], [17] or dynamic [18],
[19] or static [20] indenter. Independent of the sensing principle,
handheld tools are operated manually, which introduces multiple
issues. Because they are manual devices, there is the potential for
inaccuracies and inconsistent applications of force. Moreover, hand-
held tools can only provide relative measurements. Lastly, human-
operated devices may present privacy issues in situations without
proper training. The second method of measurement is using a robotic
arm to apply the transducer to the skin. For example, a tactile force
sensor can be attached to the end-effector of a robot arm [21]. A
challenge with this method is that the robot arm will create reaction
forces, so the body limb has to be secured. Additionally, a large
robot arm is expensive, and interfacing with it can be cumbersome.
The third method of measurement uses non-contact measurements,
such as Magnetic Resonance Imaging (MRI), to computationally
estimate the mechanical properties of tissues [22]. These non-contact
measurements can only provide relative estimates, and they can be
inaccurate as tissues are complex. This type of measurement also
requires large and expensive machines.

In this paper, we create and study a new measurement method to
map mechanical properties. Our work differs from previous methods
through the use of our previously developed Epidermal Robots
platform (Fig 1), a small robot that can traverse the surface of the
body. [23]. The robot uses suction to adhere to the skin, an array of
sensors and motors to move, as well as onboard sensors to track its
position. Utilizing Epidermal Robots for measurement of mechanical
properties of skin provides several advantages:

1) No reaction forces. Applying forces locally prevents global
reaction forces, which removes the need to secure the body
joints during testing.

2) Easy deployment. Small robots can be shipped to people’s
houses or other remote locations.

3) Accurate localization for the mapping of measurements.
4) Repeatable measurements. Automated measurements ensure

consistency and enable the use of machine learning techniques.
5) Less human labor. Measurements do not require highly trained

person to do the examination.
In the remainder of this study, we first describe the Epidermal

Robot and the measurement methods for mapping the skin properties.
Specifically, we explore the use of two onboard sensors that could
be integrated into the Epidermal Robot: an indenter as well as a
cutometer. We then discuss our procedure for analyzing sensor data,
which involves using convolutional neural nets (CNN) to detect the
lumps’ presence and size under the skin. We evaluate the performance
of the custom CNN classifier from data collected by the sensors on
simulated tissue. Finally, we do limited on-body testing to map dry
skin on the forearm.
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Fig. 1. Pictures of Epidermal Robots. A) Robot retrofitted with reflective
markers for camera tracking. B) Robot on the arm. C) Front-view
dimensions of the device. D) Side-view dimensions of the device.

II. IMPLEMENTATION

Design Overview

To quantify the mechanical properties of skin tissue, a force needs
to be applied to the skin, and the response has to be measured. In
this study, we adapted two commonly used sensors: a cutometer and
an indenter. We chose these specific sensors as they can reasonably
fit on a small robot.

Robot design

The sensors developed in this study are intended for use on
Epidermal Robots. The design of these skin climbing robots has been
described and evaluated in the previous work [23]. Epidermal Robots
utilize 9 mm-diameter suction cups as a reliable and controllable
way to adhere to the skin. For locomotion, the robot uses four
linear servo actuators (SPMSA2005, Spektrum). The robot is tethered
electrically and pneumatically to a control board with an ARM M4
microcontroller (Teensy 3.6, PJRC). The data is exchanged between
the control board and PC over a serial port. A Java application was
made to visualize and log the data on PC. The control board contains
two miniature vacuum pumps (SC3101PM, Skookum Electronic co.)
to generate a vacuum pressure of about -30 kPa for the suction
cups. This board also measures the pressure for regulation purposes
with two pressure sensors (MPXV611, NXP). The control board also
coordinates the pressurization of the suction cups and the motion
of the linear servo actuators for locomotion controls. Aside from
the electronic sensors and actuators, the robot’s parts are 3D printed
with an SLA printer (Form 2, Formlabs, Black resin V4 ). During
movement, the robot requires about 1.21 Watts, provided from the
tether. The weight of the robot is 10 grams. The robot can crawl
at a maximum speed of 31 cm/min, but runs slower during indenter
and cutometer measurements. The robot can climb on curved body
surfaces of radii above 4.4 cm, which includes an adult-sized torso
(12 cm), but not a wrist (2.5 cm). The robot can move on vertical
surfaces and upside down, assuming the tether is properly supported.

Cutometer: measuring with suction

A cutometer applies suction to the skin and measures how the
skin deforms under negative pressure. In our work, we apply the same
principle as illustrated in Figure 2. Since the feet of the robot already
have suction cups, they can be readily augmented with a small off-the-
shelf infrared proximity sensor (GP2S60A, Sharp). In our design, we
mounted the sensor on a custom-designed printed circuit board (PCB)
and glued it with epoxy inside a specially designed suction cup. To
comply with the infrared light-emitting diode (IR LED) current limit,
the current was limited to 21 mA with a 100 Ohm resistor.

The infrared proximity sensor simultaneously emits 950 nm wave-
length light out of its IR LED while detecting the reflected light
with a phototransistor. At this wavelength, the skin reflects some of
the infrared light. As the distance between the sensor and the skin
increases, there is more scattering, and the phototransistor detects
less light. This sensor allows for the measurement of skin properties
because we expect the skin to displace less in a vacuum if there is a
lump underneath the skin surface. This is illustrated in Figure 2A. To
characterize a given tissue sample and to alleviate external influences
on the reflectance, we fit the raw infrared data during suction (e.g.,
Figure 2C) to an exponential function:

f(x) = ae−bt + c (1)

Where a,b,c are constants specific to the curve and t is time (sec). A
heat map can be generated based on the parameter values measured
at discrete points over the surface of a tissue sample. Example heat
maps are shown in Figure 3. We found that the parameter a provides
the most relevant information for detecting and characterizing lumps
underneath the skin surface. We visually compared heat maps
produced with parameter a, b, and c and found parameter a to better
reflect the simulated lump. This parameter is the scaling factor in
the exponential function fitted to the IR data and is affected by the
sensor’s relative location to the lump.

Indenter: measuring force and deformation

An indenter-based technique is another common way to measure
the elasticity of the skin [18]–[20], [24]. Also, such a technique
is used in durometers for quick non-destructive hardness testing of
a material such as rubber or metal. This is done by creating an
indentation on the material with a known force, and then measuring
the resulting depth of indentation. Hardness is correlated with tensile
strength and elastic modulus, so in this work, we use a similar
approach to measure the elastic modulus of skin.

Elastic modulus is the slope of the stress-strain curve in the elastic
linear region during unilateral loading. It is a useful parameter as it
provides an absolute way to quantify a material. An equation for the
elastic modulus is:

E =
stress

strain
=

F/A

∆L/L0
(2)

Where F is the force (N), A is the area and ∆L is the change in
length and L0 is the original legnth.

Measurement methods with an indenter provide an approxima-
tion to the elastic modulus of the soft tissue compared to tensile
testing [25]. However, while tensile testing is more accurate, it
is not possible to apply this method noninvasively. It requires a
prepared bulk sample and a universal testing machine with unilateral
loading. For this reason, we chose an indenter method. Additionally,
while dynamic measurements provide insight from cycling testing,
we restrict our methods to static measurements due to practical
limitations such as the speed and robustness of our linear servos.
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Fig. 2. Cutometery sensing principles with the robot. A) A graphical representation of the cross-section of the suction cup and the skin. The red
arrow represents transmitted infrared light, and green is the light reflected back to the sensor. The skin with the lump bulges less under vacuum
than the skin without the lump. B) The Epidermal robot with an infrared sensor integrated into the suction cup. C) Raw data from an infrared sensor
and pressure before and after suction is applied to the skin. The suction cup moves closer and closer to the skin before attachment, so infrared
intensity increases during baseline. D) The images of skin bulging under suction with a clear suction cup.
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Fig. 3. Example of 11x11 pixel heat maps collected by cutometer and indenter for different lump depth and diameter in the simulated tissue. There
are 11x11 pixels with an individual size of 2x2 mm. To improve visual clarity, each heat map is colored in relation to itself only. Bessel interpolation
was applied to all samples.
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Fig. 4. Indenter sensing principle. A) The design of the force sensor
indenter. On the left is a cross-section view of the plunger assembly. The
force sensor is sandwiched between two 3D printed pieces. The plunger
has a clearance to move freely. On the right is the isometric view of the
assembly. B) The data collected by the indenter includes simultaneous
measurement of force and indent over time.

In our design, we modify the durometer to allow us to measure
the applied force (stress) and deformation (strain) simultaneously.
Force is measured using a miniature force sensor (FSS1500NSR,
Honeywell). The signal is conditioned with a Wheatstone bridge,
amplified and passed through a high resolution (24-bit) analog-to-
digital converter (HX711, AVIA semiconductor). The force sensor
was fitted with a custom-designed 3D-printed tip with a diameter of
3 mm, allowing for easy calculation of stress. The indenter design is
shown in Figure 4.

To calculate the elastic modulus of the skin, we apply a known
deformation and measure the resulting force on the indenter. We can
plug these data values directly into the elastic modulus equation.
Specifically, we calculate the stress applied to the indenter at discrete
displacements ranging from 0 to 1.5 mm indentation with 0.1 mm
intervals. From this data, we obtain the slope from a linear fit,
which is the elastic modulus. We assume that L0 is 1.5 mm. The
displacement of the indenter was limited by the size of the robot and
the displacement of the linear servo motors.

The simulated tissue testing was done using a force sensor.
However, we found that the force sensor is too large to fit into
the current robot. To fit the robot with an indenter, we replaced the
force sensor with a force-sensing resistor (FSR) as a proof-of-concept.
Specifically, we used FSR400 (Interlink Electronics). While FSRs are
smaller and allow for decreasing sensor size, the measurements were
nonlinear and noisy, requiring more complicated data processing. We
used two linear motors (SPMSA2005, Spektrum) to push the indenter
into the skin. We used two motors to increase the pushing force and
position the rod between the two suction cups. If the rod were offset
from the middle, the robot would tilt during the pushing, potentially
causing detachment from the skin. The displacement of the rod was
extracted by digitizing the voltage from the potentiometer of the servo
that is used as an encoder. Figure 5, shows the robot equipped with
the indenter.

The robot has to be well and stably attached to the skin, as the
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Fig. 5. Robot equipped with an indenter. A) The robot makes an
indentation on the skin. B) Example strain vs stress graph obtained from
one measurement on the skin. C) The robot walking on the forearm, as
it makes indenter measurements.

force exerted by the rod into the skin is transferred to the suction
cups. To prevent detachment as well as influence the measurements,
this force has to be less than the attachment force of the robot.

Simulated tissue fabrication
To characterize our cutometer and durometer sensors, as well as

to provide ground truth for training a supervised neural network to
classify sensor data, we draw from previous works on generating
simulated tissue [6], [8], [9]. In this work, tissue samples were created
by utilizing silicone (Ecoflex 00-30, Smooth-On) mixed with 2% (by
weight) flesh color pigment (Silc pig, Smooth-On). Ecoflex 00-30
is frequently used to mimic biological tissues. Skin has an elastic
modulus between 2.8 - 31.9 kPa, while Ecoflex 00-30 reported values
are 22.1 - 125 kPa [26], [27]. The silicone samples are comparable
to the skin in mechanical properties and color, which is important
for collecting realistic data with the cutometer’s infrared sensor.

For fabrication, an acrylic cube was used as a mold. To simulate
lumps under the skin, hard 3D printed plastic balls (Black resin V4,
Form 2, Formlabs) with an elastic modulus of 2.8 GPa [28] were
embedded in the silicone. The lumps were suspended at different
heights in silicone by fixing them on a small and stiff optical
fiber, which was removed after the silicone was cured. Figure 6B
shows a suspended 3D printed ball prior to filling the mold with
silicone. Lumps were stiffer than biological lumps [1] but provide an
appropriate comparison with previous literature that employes other
plastic ball materials such as Delrin [6] with approximately 3.1 GPa
elastic modulus [29]. The elastic modulus of ductal carcinoma has
been shown to be 460-580 kPa [1]. This provides around 1:18 to 1:29
contrast from the fat tissues. Using an elastic modulus of 125 kPa
for Ecoflex 00-30, the contrast is around 1:22 with the 3D printed
lumps.

Lumps of various sizes (4,6,8,10 mm diameter) were embedded
at different heights (1,2,3,4,5 mm), as demonstrated in Figure 6. A
sample without a lump was also fabricated, resulting in a total of 21
simulated tissue samples.

Training Data Collection
Since neural networks require a lot of training data, generating

sufficient sensor data with each of the simulated tissue samples is
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Fig. 6. Testing of simulated tissue. A) CNC machine loaded with the
silicone tissue sample and cutometer head. B) The mold for test tissue,
before pouring the silicone. C) The mold after the silicone is poured.
D) Left, the top view of the silicone tissue, showing the location of the
simulated lump. Right, the side view cross-section of silicone tissue,
showing the height and diameter parameters.

a time-intensive task. For example, data collection for this study
required a total of 125 hours. Since the current robot prototype is
not robust enough for such a task, we modified the head of a CNC
machine to move the suction cup or indenter to simulate the walking
of the robot.

An off-the-shelf, inexpensive 3-axis Computer Numerical Control
(CNC) router (Genmitsu, 1810-PRO) with a resolution of 0.1 mm

was modified for testing, as shown in Figure 6. The CNC machine
allows motorized control of 3-axis from software, and is commonly
used for machining. The CNC spindle was replaced with a 3D printed
adapter head (PLA material on Prusa Mark 2) for attaching the
suction cup or the indenter. The CNC router was controlled with
an ARM M4-based microcontroller (Teensy 3.6, PJRC) by sending
G-code (machine control code) commands over serial to the motor
control board. The microcontroller also sampled the pressure sensors
and infrared sensors at 14-bit resolution and sent the data to the PC
for visualization and data storage in real-time with a Java application.

The head moved with a step size of 2 mm, which provided the
minimum sampling resolution for the smallest lump (4 mm). For
each test run, an 11 by 11 array of data points was collected, for a
total of 121 points. The data were combined into an 11x11 grayscale
image for further processing. Each simulated tissue sample was tested
15 times, thus providing 315 distinct images.

Classifier Architecture
The collected images were used to train a supervised neural

network with 21 output classes (no ball, and combinations of four
diameters and five depths). TensorFlow and Keras libraries [30] were
used to implement the machine learning techniques. Convolutional
neural nets (CNNs) have previously been shown to be a capable
architecture for image data. Thus, we used CNNs with Relu acti-
vation. It was followed by a fully-connected layer with 50 neurons

Convolution layers

2x2x8
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Dense layer 

n = 50Flatten
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n = 21
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Fig. 7. The flow diagram of the convolutional neural net used to classify
the diameter and depth of the simulated lump tissue.

and Sigmoid activation. Finally, a dense output layer with Sigmoid
activation. Classifier model, as shown in Figure 7. For training, we
used 80-20% train and test split with a shuffle. The indenter model
was trained over 200 epochs with a batch size of 100. The cutometer
model had 400 epochs and a batch size of 100. We used the Adam
optimizer with a 0.01 learning rate.

To avoid using training data in validation, 20% of the data was
not used in training the model. It was used to determine accuracy
in the evaluation section. The data was split randomly in each
training/validation.

We decided to use a machine learning approach versus a simpler
fitting approach (e.g., fitting a function on a heat-map) for the fol-
lowing reasons. First, machine learning has shown to be a promising
technique in medical imaging [31], as well as it is an industry-
standard in image recognition and classification, such as of human
faces [32]. Second, there is a large variety of skin (dryness, color,
age variations) that a conventional signal processing approach would
have difficulty in capturing. With a large amount of diverse data, it
is potentially possible to train a well-generalized model. Third, the
machine learning approach could be easily adapted to various sensing
methods, as we show here that the same network architecture works
for two sensing approaches. Also, the network could be adapted to
the fusion of multiple sensors.

Localization on human body

To utilize cutometer and indenter sensors on Epidermal Robots, the
robots must know where they are collecting the data on the human
body. This requires localization as well as a global map of the body.
In our previous work [23], [33], we proposed a localization technique
based on motion capture. We retrofit the robots with 4 infrared 3 mm
reflective balls. Motion capture cameras (Prime 13, Optitrack) track
the ball positions to determine robot location and orientation. The
3D shape of the body is captured with an off-the-shelf 3D scanner
(Sense2, 3D Systems). Finally, reflective balls are placed on the body
to compute the orientation of the body in relation to the robot.

Alternatively, tracking could be done using an inertial tracking and
odometry system. However, as explored in our previous work, the
drift in this approach is too large for this application. It is advisable to
reduce the error in the future so that external tracking is not required.

III. EVALUATION

Simulated lump model results

The mean accuracy of ten models is reported here. Due to a small
data set, each time, the model was retrained and evaluated with a ran-
dom shuffle. A confusion matrix of the agreggated cutometer results
is shown in Fig 8. The indenter had only a few misclassifications. The
classification accuracy between no lump vs. samples with lumps was
at 100% for cutometer and indenter. However, some errors occurred
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Fig. 8. Confusion matrix for cutometer for identifying lumps of different
diameters and depths. Each matrix shows aggregated labels from 10
models. Due to random shuffle, the number of samples in each class
slightly varies.

between the classification of different lump diameters and depths.
Below is a more detailed discussion of the errors.

For cutometry, we obtained 98.8% (std:±0.3%) validation accu-
racy. The misclassification mostly occurred with the 4 mm lump
misclassified as a 6 mm lump and vice-versa. Also, there were
misclassifications between 1 and 2 mm depths for the 4 mm lump.
Looking into the raw data, as visualized in Figure 3, the misclassified
cases look similar. The instrument does not seem sensitive enough in
those cases. Increasing suction pressure might improve sensitivity.

Using an indenter, a higher validation accuracy of 99.6%
(std:±1.1%) was obtained. In some cases, 4 mm lump at 4 mm depth
was classified as at 3 mm depth.

Cutometer forearm validation

We conducted a limited experimental validation on healthy skin.
We fitted both of the robot’s suction cups with IR sensors that we
described earlier. We used a hot air gun with a temperature set at
100 Celcius and dried a patch of the skin for 5 minutes. The hot
air gun was held about 10 cm away from the skin to avoid causing
pain. Dehydrating the skin decreases the modulus of elastisity [34].
We expected a change in the ’a’ parameter, as shown in Equation 1.
After the skin was dried , the robot walked 30 steps on the forearm
and collected data for each 15.4 mm step from the two IR sensor
inside the suctions cups. To avoid gravity effects from the tether, the
forearm was placed horizontally.

The robot took approximately 3 minutes to complete the task.
Results from one suction cup is shown in Figure 9. There is a large
decrease in the ’a’ parameter as the robot walked on the dried skin,
vs. normal skin.

Measuring elastic modulus with indenter robot

For the robot with the indenter, we collected data from a single
point on the forearm. We were interested to see if we could measure
the modulus of elasticity from the indenter. We placed the robot on
the forearm for the measurement.

The results are shown in Figure 5B. To extract the elastic modulus,
we use a linear fit. Comparing the raw data in Figure 5B to Figure
4B shows that the FSR-based sensing is noisier than the force sensor.

Walking

 path

0 cm

14 cm

2 cm

Dry skin region

A

B

Fig. 9. IR sensor data, captured by robot moving on the arm over a
dry spot. A) Measurements from each step as the robot moved forward.
B) Picture of the forearm with overlaid robot path and circled dry skin
region.

The skin elastic modulus has large variations, as reported in the
literature. It greatly depends on whether it is in-vivo or in-vitro
testing, the type of testing machine, and the location of the test [35].
In our case, we compare to Young modulus for indentation testing on
the limbs and in-vivo only. Our elastic modulus is somewhat higher
(378 kPa) than what is reported in the literature for indentation. One
study reported 10.4 to 89.2 kPa [36] for lower limbs, while another
study reported 21 to 195 kPa [37]. One of the main sources of noise
and error is the FSR.

DISCUSSION

Comparison between cutometer and indenter
The cutometer and indenter have different advantages and dis-

advantages. The cutometer does not require any moving parts and
is easily integrated into the robot, as suction is already used for
adhesion. As a disadvantage, it does not provide absolute measure-
ments, as the infrared light is affected by the skin properties and
state. For example, skin discolorations can affect the reflectance,
however more sophisticated sensing such as time-of-flight infrared
can mitigate that. Furthermore, the resolution is limited by the size
of the suction cup, which is 9 mm in diameter currently. The indenter
has a higher resolution as the diameter of the tip is only 1 mm. Also,
an indenter can provide absolute measurements, as it is not affected
by skin surface properties. As a disadvantage, the indenter requires
two additional motors, which reduced the robustness of the sensing
method. Also, the indenter is significantly slower: each measurement
can take up to 15 seconds vs. 5 seconds with a cutometer. During
measurements, the speed is 6.2 cm/min for the indenter and 18.5
cm/min for the cutometer, with a 15.4 mm step size. Without sensing,
the speed is 31.0 cm/min. Potentially, the measurements from the
indenter and cutometer could be fused. The cutometer could be used
to quickly identify areas that need attention. The indenter could go
over those areas with higher resolutions and accuracy but slower
speed.
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Comparison to previous work
Although it is challenging to compare the experiments directly

as the different studies had unique setups, we will attempt to make
comparisons in general terms. Closest in testing is the work by Li
et al. [9], which used a 9x9 element soft indenter array. This work
did not use a machine learning approach for lump classification. The
experiment on simulated tissue reported an error of 2% and a standard
deviation of 12% for lump size classification. In contrast, using an
indenter, we obtained a slightly better error of 0.4% and a lower
standard deviation of 1.1%).

Simulated tissue vs. real tissue
There are some differences between the simulated tissue setup and

real skin. While we were able to obtain valid measurements from
both, we want to highlight the differences here.

The simulated tissue was laid flat, so gravity did not play a role.
We tested the forearm on a flat surface as well. The human body
might cause the robot to be at a different angle due to curvature.
While the robot can traverse torse, arms, and legs, this might affect
the measurements. Futhermore, the localization on the human body is
more complex. External camera tracking can be accurate but difficult
to set up at a remote location. Alternatively, a “dead-reckoning”
approach could be used with onboard sensors, using IMUs and
encoders. The localization is also needed to avoid and track missing
steps. On real tissue, the robot might miss a step due to inability to
attach.

In the simulated tissue, the indenter is pushing against the router
while fixed in a rigid frame. In the forearm experiment, the robot
pushes against it’s attached legs. Since the skin is elastic, this can
cause stretching of the skin under the suction cups, affecting the
measurements. This could be more profound at higher indentations,
as higher force is applied to the skin. We tried to control for this effect
by making a minimal indentation of 1.5 mm. We have not seen this
effect in Figure 5, and the force appears to be linearly proportional
to displacement.

Applications
In this paper, we focus on a diagnostic use case by using Epidermal

Robots to image skin mechanical properties and lumps. Beyond
medicine, we believe there are other applications of these techniques.
The applications are especially appealing where a large machine
cannot be used, such as at home or in a remote location.

For example, this approach can potentially be used for more
comfortable and effective sockets for limb prosthetics. Ideally, a limb
prosthetic should have variable stiffness to match the mechanical
properties of the limb, but this requires a map of the limb’s me-
chanical characteristics. If such a map is obtained, a multi-material
printer can print a custom socket with variable stiffness. Currently,
the socket fitting process is done manually. Researchers have been
exploring multi-indenters [38] or camera-based imaging [39]–[41]
for such measurements. Such approaches require specialized and
large machines. The Epidermal Robots can be used to map the
stiffness at home without the need for large machines. Beyond
prosthetics, mechanical mapping properties can be used to make more
comfortable clothing for sports applications.

Another area is cosmetics and personal care. Currently, the effec-
tiveness of new skincare products (e.g., cremes) is measured using
a cutometer. Such an approach provides limited data and could be
enhanced by systematically taking multiple measurements over an
area. However, the robot should be miniaturized for face use.

Furthermore, applications could include biomedical research stud-
ies and spatial imaging of skin and tissue disorders. Also, this
mapping technique could be used on large animals as well.

Limitations and Future Work

As the focus of this paper is technology development, the work
was conducted on a simulated tissue. Only a limited proof-of-concept
study was done on a human forearm. Real lumps were not tested. To
fully understand this approach’s usability, an extensive study with
multiple patients and skin locations would have to be conducted.
Ideally, the study would image the lumps using the robots compared
to a gold-standard such as manual palpation MRI, CT, or ultrasound.

For the scope of this work, we focused on two sensing methods
and a limited depth of only 5 mm. In the future, we hope to explore
other ways to allow 3D imaging inside the body. We hope one day, the
robot could provide data similar to CT/MRI scanners. For example, a
robot equipped with infrared light and a time-of-flight detector could
be used for diffuse optical tomography. This technique allows 3D
imaging inside the body. Robots could even potentially be equipped
with an ultrasound probe for the same purpose. With advanced
imaging techniques, the sensitivity could potentially be increased to
detect early signs of cancer such as microcalcifications in breasts.

Furthermore, we plan to improve the machine learning approach to
extrapolate information beyond lump presence and size. For example,
if the robot could flag, detect medical issues, and improve diagnostics
accuracy.

There are technical limitations to the robots that affect the usability
of robots in the real-world. However, we believe those limitations can
be overcome with more development. One limitation is a tether, which
could be dispensed with by further component miniaturization. The
current scan time is slow, with each indenter measurement taking 15
sec. To decrease the scanning time, we hope to explore how multiple
robots could work together. Lastly, localization requires an external
camera setup, but a localization technique that is fully integrated into
the robot is preferred; we have explored an initial attempt at this in
previous work [23], [33].

The effects of gravity on the measurements will need to be studied
and accounted for in the untethered version. In the current version,
it is hard to uncouple the influence of the tether from gravity.

IV. CONCLUSION

In this paper, we demonstrate the potential for small robots to
systematically map the human body. This technique can provide
advantages over handheld tools such as easy deployment, privacy,
repeatable measurements, and localization. To validate this idea, we
first conducted sensor-level testing by fitting a CNC router with
custom indenter and cutometer sensors and characterized sensor
performance on simulated lump tissues. Using supervised neural
networks, the classification accuracy of lump size and depth was
99.6% for the indenter and 98.8% for the cutometer. After these
initial promising results, we integrated the sensors on the Epidermal
Robots platform. The cutometer sensors were embedded into the
suction cups with no changes. The indenter sensor was switched to
an FSR due to size constraints. In the final validation experiment, the
cutometer robot walked on a forearm with a patch of dry skin. The
data shows that dry skin was successfully distinguished. The indenter
robot was tested on a single spot due to technical limitations, but
it was able to determine the local skin elasticity. We believe that
our approach provides a new way to measure the human body for
various applications, including medicine, cosmetics, biomechanics,
and clothing.
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